Influence of microbial bioinoculants on the accumulation of new phytocompoundsin Oroxylum indicum (L.) Benth. ex Kurz

The seedlings of Oroxylum indicum were inoculated with plant growth promoting microbes (PGPMs) mainly, Glomus mosseaeTrichoderma harzianum and Pseudomonas putida both alone and consortium. The GCMS analysis of the methanolic root extract of inoculated seedlings of O. indicum showed that seedlings treated with mixed consortium of mycorrhizal fungi, bacteria and fungus showed the presence of maximum number of phytocompounds. The GC-MS analysis of control seedlings showed presence of 55 compounds where three new compounds were found i.e.  2-Cyclobutene-1-Carboxamide; Tetradecanoic Acid, 10, 13-dimethyl-, methyl ester; 1-methylene-2b-hydroxymethyl-3, 3-dimethyl-4b-(3-methylbut-2-enyl)-cy. 53 compounds were found in seedlings treated with mycorrhizae i.e., Glomus mosseae, and three new compounds were found i.e., 1-Ethyl-2-Hydroxymethylimidazole; Octadecanoic Acid, 11-Methyl-, methyl ester; 4-Methyl-1, 4-Heptadiene. The seedlings treated with bacteria i.e.  Pseudomonas putida showed the presence of 52 compounds and three new compounds were found i.e. Meso-4, 5-octanediol; 1-ethyl-2-hydroxymethylimidazole; 2, 5-cyclohexadiene-1, 4-dione, 2, 5-dihydroxy-3-methyl-6-(1-methylethyl) – . A total of 56 compounds were present in seedlings treated with fungus i.e. Trichoderma harzianum and five new compounds were found i.e. 2-CyclohexeN-1-one, 2-Butyl-3-Methoxy; Methyl 12, 13-Tetradecadienoate; Methyl 6, 9, 12-hexadecatrienoate; 1, 9-Decadiyne; 1, 4-Naphthalenedione. The seedlings treated with dual consortium of mycorrhizae and bacteria showed the presence of 88 compounds and five new compounds were found i.e., N-(1-Methoxycarbonyl-1-methylethyl)-4-methyl-2-aza-1,3-dioxane;1-ethyl-2 hydroxy methylimidazole; Methyl 8-methyl-nonanoate; Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl; Methyl 12,13-tetradecadienoate. 152 compounds were present in seedlings treated with dual consortium of mycorrhizal fungi and fungus and ten new compounds were found to be present i.e. 1,9-Decadiyne;  3,7,11-Trimethyl-3-hydroxy-6,10-dodecadien-1-yl acetate; 3-Heptyne, 7-chloro; 3-Methyl-4-(methoxycarbonyl) hexa-2,4-dienoic acid; Benzo[c]cinnolin-2-amine  ; Tetradecanoic acid, 10,13-dimethyl-,Methyl ester; Cis,cis-4,6-octadienol; 2-Cyclohexen-1-one, 2-butyl-3-methoxy; Methyl 12,13-tetradecadienoate; 2-Aminopyridazino(6,1-b) quinazolin-10-one. A total of 36 compounds were present in seedlings treated with dual consortium of bacteria and fungi and two new compounds were found i.e. [1,4] Dioxino [2,3-b]-1,4-dioxin, hexahydro-2,3,6,7  ; 1-Ethyl-2-hydroxymethylimidazole. The seedlings inoculated with mixed consortium of mycorrhizae, bacteria and fungus showed the presence of 213 compounds and fourteen new compounds were found i.e. 3,7,11-Tridecatrienenitrile, 4,8,12-Trimethyl; 1,9-Decadiyne; 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-Hexamethyl-, (ALL-E)  ; 1-Methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cy; 1,9-Decadiyne, Cyclobutane, 1,2-bis(1-methylethenyl)-, trans-, 3,7,11-Trimethyl-3-hydroxy-6,10-dodecadien-1-yl acetate, 5-Hydroxy-4-hydroxymethyl-1-(1-hydroxy-1-isopropyl)cyclohex-3-ene, 5,8,11,14-Eicosatetraenoic acid, methyl ester, (all-z)-, 1-Cyclohexyl-2-buten-1-ol (c,t) , 1-Oxetan-2-one, 4,4-diethyl-3-methylene-, Tetradecanoic acid, 10,13-dimethyl-, methyl ester, 2-Cyclohexen-1-one, 2-butyl-3-methoxy-, Methyl 12,13-tetradecadienoate, Heptacosanoic acid, 25-methyl-, methyl ester Hexadecanoic Acid, Methyl Ester; 2-Chloroethyl Linoleate; 9,12-Octadecadienoic Acid, Methyl Ester, (E,E); Butanoic acid, methyl ester; 4A,5,6,7,8,8A(4H) HexahydroBenzopyran-3-Carboxamide, 8A-Methoxy-4A-M,; Octadecanoic acid; Farnesene; Squalene; Myrcene; Naphthalene; Tetradecanoic Acid, Methyl Ester; Octadecanoic Acid, Methyl Ester; 1H-Cycloprop[E] Azulene, Decahydro-1,1,4,7-Tetramethyl-, [1AR-(1A].Alph ; Cyclohexane, 1-methyl-4-(1-methylethenyl)-, trans (Elemene); Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (s)- (Limonene);  were found to be present in this treatment.

Keywords: Oroxylum indicum; Glomus mosseae; Trichoderma harzianum; Pseudomonas putida; phytochemicals; GCMS

Published by Dr. Chandrima Debi

Hi, I am Chandrima Debi. I am a Doctorate in Forestry and an independent researcher. Ever since childhood, I experienced deep-rooted connection with nature, forest and wildlife. I have written various research articles, case studies based on geology, forests, medicinal plants, biodiversity and conservation. Through this blog I share my experiences with nature and forests around us and aid towards the protection and conservation of biodiversity, wildlife and the values associated.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: